Article ID Journal Published Year Pages File Type
7745802 Solid State Ionics 2015 7 Pages PDF
Abstract
We have studied the structure, microstructure, and electrochemical properties in air of (Pr2 − xZrx)Zr2O7 + x/2 (x = 0.15, 0.32, 0.78), Pr2Zr2O7, and Pr2(Zr2 − xPrx)O7 − x/2 (x = 0.1, 0.4, 1) materials. The solid solutions were prepared through coprecipitation followed by heat treatment of the precursors at 1550 °C for 4 h. According to XRD data, the extent of the pyrochlore-like Pr2 ± xZr2 ± xO7 ± x/2 solid solutions at 1550 °C is ~ 6 mol.%, which is considerably smaller than that in the NdZrO and SmZrO systems at this temperature. Among the pyrochlores, the highest bulk conductivity was offered by the (Pr2 − xZrx)Zr2O7 + x/2 (x = 0.15): 7.15 × 10− 3 S/cm at 800 °C (Ea = 0.66 eV). The pyrochlore-like Pr2(Zr2 − xPrx)O7 − x/2 (x = 0.1) had lower conductivity (3.97 × 10− 3 S/cm at 800 °C). The highest bulk conductivity among the materials studied was found in the Pr2O3-rich fluorite-like Pr2(Zr2 − xPrx)O7 − x/2 with x = 1: ~ 0.217 S/cm at 800 °C (Ea = 0.0.31 eV). The temperature-dependent conductivity of the Pr2O3-rich fluorite-like solid solutions Pr2(Zr2 − xPrx)O7 − x/2 with x = 0.4 and 1 had a break at 560 °C, suggesting a change in the mechanism of ion transport at this temperature.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,