Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7748208 | Coordination Chemistry Reviews | 2013 | 22 Pages |
Abstract
Carbon-based nanomaterials demonstrated to be highly suitable as support for the elaboration of heterostructures. Atomic layer deposition (ALD) proved to be a technique of choice for the coating of nanostructured carbon materials. These heterostructures find applications in various areas such as electronics, sensors and energy storage and conversion. Because the chemical inertness of the graphitic carbon inhibits the initiation of ALD film growth, numerous surface functionalization approaches have been investigated in order to provide the required nucleation sites. The different strategies employed for the ALD onto carbon nanotubes, graphene, graphite and other nanostructured carbon materials (e.g. carbon black, fibers) are reviewed. The peculiarity of ALD for tailoring the chemical, structural and morphological properties of the deposited material are discussed. Finally, in order to highlight the importance of this class of materials, possible applications in catalysis and gas sensing devices are also reviewed.
Related Topics
Physical Sciences and Engineering
Chemistry
Inorganic Chemistry
Authors
Catherine Marichy, Nicola Pinna,