Article ID Journal Published Year Pages File Type
774950 European Journal of Mechanics - A/Solids 2011 10 Pages PDF
Abstract

The dynamic stability behavior of thin-walled rotating composite beams is studied by means of the finite element method. The analysis is based on Bolotin’s work on parametric instability for an axial periodic load. The influence of fiber orientation and rotating speeds on the natural frequencies and the unstable regions is studied for symmetrically balanced laminates. The regions of instability are obtained and expressed in non-dimensional terms. The “modal interchange” phenomenon arising in rotating beams is described. The dynamic stability problem is formulated by means of linearizing a geometrically nonlinear total Lagrangian finite element with seven degrees of freedom per node. This finite element formulation is based on a thin-walled beam theory that takes into account several non-classical effects such as anisotropy, shear flexibility and warping inhibition.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,