Article ID Journal Published Year Pages File Type
774990 European Journal of Mechanics - A/Solids 2011 11 Pages PDF
Abstract

In order to identify different variables that affect ratchetting simulations, variation of elastic modulus during loading and unloading is considered and discussed based on the experimental observations which pointed out by Morestin and Boivin, 1996, Ishikawa, 1997 and Cleveland and Ghosh, 2002, Zhou et al. (2005) and recently by Khan et al., 2009a, Khan et al., 2009b and Khan et al., 2009c. Then the effect of such variation on simulations is scrutinized from the theoretical point of view by considering simulations of ratchetting experiments conducted on stainless steel 304L by Hassan et al. (2008) using the well-known Armstrong–Frederick model. It is shown that, using two different values for the elastic modulus during loading and unloading could have a significant effect on simulations of uniaxial ratchetting. On the other hand, such significant effect hardly occurs in the case of simulations of biaxial ratchetting experiments under consideration. The importance of such findings is that the excessive ratchetting over-prediction resulting from any specific kinematic hardening rule is expected to decrease significantly by taking into consideration this effect. In this case, modeling of kinematic hardening rules could necessitate more attention and reconsideration.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,