Article ID Journal Published Year Pages File Type
775221 International Journal of Fatigue 2014 9 Pages PDF
Abstract

A series of multiaxial ratcheting–fatigue interaction tests have been carried out on Sn–3Ag–0.5Cu lead-free solder specimens. All tests were conducted under cyclic shear strain with the constant axial stress at the room temperature with the shear strain rate of 5 × 10−3 s−1. It was found that the ratcheting strain increased with increasing axial stress and shear strain amplitude while the fatigue life decreased at the same time. The ratcheting strain rate was linear with axial stress in double logarithmic coordinate. The Ohno–Wang II constitutive model was employed to simulate the stress–strain responses. Several fatigue life prediction models were applied to predict the multiaxial ratcheting–fatigue life of the Sn–3Ag–0.5Cu lead-free solder. The Gao–Chen model which adopted the maximum shear strain and the ratcheting strain rate as the damage parameter predicted the multiaxial ratcheting fatigue life well.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,