Article ID Journal Published Year Pages File Type
775589 Engineering Fracture Mechanics 2009 12 Pages PDF
Abstract

In polycrystal materials the intergranular decohesion is one important damage phenomena that leads to microcrack initiation. The paper presents a mesoscale model, which is focused on the brittle intergranular damage process in metallic polycrystals. The model reproduces the crack initiation and propagation along cohesive grain boundaries between brittle grains. An advanced Voronoi algorithm is applied to generate polycrystal material structures based on arbitrary distribution functions of grain size. Therewith, the authors are more flexible to represent realistic grain size distributions. The polycrystal model is applied to analyze the crack initiation and propagation in statically loaded samples of aluminium on the mesoscale without the necessity of initial damage definition.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,