Article ID Journal Published Year Pages File Type
775727 International Journal of Fatigue 2009 6 Pages PDF
Abstract

In this paper, the fatigue behavior and dislocation substructures of 6063 aluminum alloy were studied under several nonproportional path loadings, which were circle, ellipse, rectangle and square paths. After fatigue test the micro-structure especially the dislocation substructures of the failure materials was carefully observed with the transmission electron microscope (TEM) method. Under the same 93 MPa equivalent stress amplitude loading, the alloy has the shortest life and the most severe cyclic additional hardening with circle path loading among all the loading paths. This attributes to the complicated dislocation substructures and severe stress concentration of the alloy during the cycling process. While under the ellipse path loading, the alloy has a comparably long life and light cyclic additional hardening. The deformation of the alloy and the morphology of the dislocation substructures determine the fatigue behavior of 6063 alloy under the same equivalent stress amplitude loading. Under the circle path loading, the fatigue life decreases while the cyclic strain increases as the loading stress amplitude increases from 47 MPa to 163 MPa. The dislocation evolution of 6063 alloy during the cycling process under circle path loading was examined with TEM. It was found that the dislocation merges with each other and changes from single lines to crossed bands. The movability of dislocation reduces and the stress concentration degree rises during the cycling process.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,