Article ID Journal Published Year Pages File Type
775805 International Journal of Fatigue 2008 12 Pages PDF
Abstract

In order to predict variable amplitude crack growth it is necessary to understand the different mechanisms present in variable amplitude and constant amplitude fatigue crack growth. AFM and SEM observations have been made of the fatigue crack fracture surface in AA7050-T7451 alloy, produced by some simple load sequences consisting of periodic underloads (R = −1) in between groups of high stress ratio (R = 0.5) loading cycles. These observations have revealed complex fracture surface features that include ridges, depressions and fissures. These features are a result of the slip band formation associated with underloads, which reduces the tendency for a new slip band to occur at the crack tip in the same direction as nearby slip bands. These slip bands change the path of the crack and result in the production of a ridge on the fracture surface. This effect suggests a model of striation formation that also explains the formation of ridges and other associated features, based on the influence of two or more active slip systems combined with the planar slip behaviour of this material.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,