Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
775974 | International Journal of Fatigue | 2006 | 15 Pages |
This paper is dedicated to the comparison of several numerical models for estimating the lifetime in a fatigue experiment. The models simulate the SPLASH experiment, which produces thermal fatigue by locally quenching stainless steel specimens. All models predict first a stabilized mechanical state (plastic shakedown) and then a lifetime prediction using several fatigue crack initiation criteria.The numerical methods are either completely nonlinear or combine approximate elastic solutions obtained from minimizing a potential energy or closed form solutions with a Neuber or Zarka technique to estimate directly the elastoplastic state.The fatigue criteria used are Manson, dissipated energy and dissipated energy combined with a hydrostatic pressure term. The latter had provided a best prediction over a series of anisothermal and isothermal LCF experiments in a classical fatigue analysis.The analysis shows that for fatigue criteria taking into account the triaxiality of the mechanical response we obtain a systematic and conservative error. As a consequence of this work, we show that simplified models can be used for lifetime prediction. Moreover the paper provides a general technique to asses from the point of view of the design engineer the combination between a numerical method and a fatigue criterion.