Article ID Journal Published Year Pages File Type
776096 International Journal of Adhesion and Adhesives 2013 11 Pages PDF
Abstract

This paper presents a numerical analysis of stress distribution predictions when shearing High Strength Low Alloy and Dual Phase sheet joints. The numerical analysis proves that the overlap size increase results in a smaller overlap rotation in relation to the loading force. The finite element program MSC Marc Mentat was used to study the stress distribution. An increase of adherend thickness results in a more uniform stress distribution, but the stress characteristics is more asymmetrical. The experimental results show the effect of reinforcing the adhesively bonded joint with spot-weld on its strength and the total destruction energy. The results of the strength tests of adhesively bonded, spot-welded, and weld-bonded joints were also presented, for sheets with a higher strength limit. Tension tests of three types of single-lap joint show that bending of the sheets depends on the flexural stiffness of the joints. In the hybrid joint, greater energy was required to separate the sheets.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,