Article ID Journal Published Year Pages File Type
776185 International Journal of Adhesion and Adhesives 2009 10 Pages PDF
Abstract

A fracture mechanics-based model for fatigue failure prediction of adhesive joints has been applied in this work. The model is based on the integration of the kinetic law of evolution of defects originated at stress concentrations within the joint. Final failure can be either brittle (fracture toughness-driven) or ductile (tensile/shear strength-driven) depending on the adhesive. The model has been validated against experiments conducted on single-lap shear joints bonded with a structural adhesive. Three different kinds of adhesives, namely a modified methacrylate, a one-part epoxy and a two-part epoxy supplied by Henkel, have been considered and three different overlap lengths have been tested. Fracture toughness and fatigue crack growth properties of the adhesives have been determined with mode I tests. The number of cycles to failure has been successfully predicted in several cases. It is interesting to notice that in the case of joints loaded at the same average shear stress, the shorter the joint, the longer the duration. This fact is also captured by the model.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,