Article ID Journal Published Year Pages File Type
776295 International Journal of Adhesion and Adhesives 2013 15 Pages PDF
Abstract

Single lap joints in many different geometric and material configurations were analysed using finite element analysis and tested in tension. Geometric parameters, such as the overlap length and adherend thickness, together with material parameters such as the adherend and adhesive stress–strain behaviour, were all tested. The mechanisms and modes of failure were observed for different cases, and positions of damage initiation were identified. Failure patterns were related to failure mechanisms. A failure prediction methodology has been proposed and a good correlation was obtained between the experimental and finite element predictions of strength for a variety of joint configurations. The study is presented in two parts. In the first (present paper), high strength steel adherends are considered and in the second paper ductile steel adherends are studied. For high strength steel adherends and a relatively short overlap, failure is dominated by adhesive global yielding. As the overlap gets longer, however, failure is no longer due to global yielding, but due to high local shear strains.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,