Article ID Journal Published Year Pages File Type
77643 Solar Energy Materials and Solar Cells 2016 5 Pages PDF
Abstract

Most boron diffusion technologies result in the formation of an undesirable boron-rich layer (BRL) on the emitter surface. This paper reports on a study of the impact of gradual etching of the BRL on n-type silicon solar cell performance. It is found that gradual removal of the BRL improves surface passivation and bulk lifetime in the finished cell, while over-etching of the BRL results in a sharp decrease in fill factor due to the increased n-factor and series resistance. It is shown that the optimum chemical etching of the BRL formed as a byproduct of the screen-printed boron emitter diffusion used in this study raised the cell efficiency by ~0.5%, resulting in 20.0% efficient large area (239 cm2) n-type solar cells. The change in BRL thickness and morphology as a function of chemical etching time was investigated by TEM and AES measurements to explain the quantitative impact of BRL removal on cell performance.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,