Article ID Journal Published Year Pages File Type
776848 International Journal of Impact Engineering 2012 10 Pages PDF
Abstract

In this paper, a new concept space shield structure, namely amorphous alloy reinforced Whipple shield structure, is proposed. A series of experiments have been performed on this new Whipple shield structure which consists of an amorphous alloy reinforced bumper and an LY12 Al (similar to 2024 Al alloy) rear wall using two-stage light-gas gun at impact velocities of 3.5 km/s and 5.5 km/s. Damages including penetration hole in the front bumper and craters on the rear wall have been studied, and it is found that the protective capability of Whipple shield was improved by replacing LY12 Al alloy bumper with Fe-based amorphous alloy reinforced bumper, especially at low impact velocity of 3.5 km/s. A dimensional analysis of the parameters involved in the hypervelocity impact indicates that the coating material with higher density, lower specific heat and not very high melting temperature is helpful for better performance of the new shields. Wave propagation in the projectile and bumper is discussed, and the shock wave strength and temperature rise are calculated, it is found that the amorphous alloy reinforced bumper can produce higher shock pressures and induce higher temperature rise in the projectile. Thus, our preliminary research shows some positive indications that the new Whipple shield structure may provide higher protection level than the traditional one.

► A new concept space shield structure was proposed. ► The new shield increased the protection level in hypervelocity impact experiments. ► Two-layer structure bumpers helped to get better performance.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,