Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7769096 | Biochemical Systematics and Ecology | 2013 | 8 Pages |
Abstract
To examine population genetic diversity and variation of the red stingray Dasyatis akajei, samples from 1 freshwater region and 6 coastal localities within its distribution range were analyzed by using amplified fragment length polymorphism (AFLP) technology. A total of 207 loci were identified by 4 primer combinations from 87 individuals, 174 of which were polymorphic (84.1%). A high level of Nei's gene diversity was observed with the overall value of 0.230 ± 0.179. No significant genealogical clusters associated with sampling sites were revealed on the UPGMA tree. Both analysis of molecular variance (AMOVA, ΦST = 0.085, P = 0.00) and pairwise FST indicated significant genetic differentiation among four marine samples. However, no particular genetic differentiation was detected between marine and the limited sampling freshwater populations (AMOVA, ΦCT = 0.056, P > 0.05). Except for the TZ vs. WZ (5.193), the gene flow estimates (Nm) demonstrated the effective immigrants were 1.918-2.976, suggesting low level dispersal between pairwise marine populations. Species-specific habits (demersal and sluggish habits) are probably responsible for the population structuring.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Ning Li, Na Song, Guang-ping Cheng, Tian-xiang Gao,