Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
777106 | International Journal of Impact Engineering | 2009 | 14 Pages |
This paper presents an experimental and numerical investigation on low velocity perforation (in the velocity range 3.5–15.8 m/s) of AA5083-H116 aluminium plates. In the tests, square plates were mounted in a circular frame and penetrated by a cylindrical blunt-nosed projectile. The perforation process was then computer analysed using the nonlinear finite element code LS-DYNA in order to investigate the effects of anisotropy, dynamic strain aging (causing negative strain rate sensitivity) and thermal softening in low velocity impacts on the present aluminium alloy. Dynamic strain aging has been shown to influence both the predicted force level and fracture, while thermal softening only influences fracture prediction. No significant effect of plastic anisotropy has been observed.