Article ID Journal Published Year Pages File Type
777250 International Journal of Fatigue 2007 9 Pages PDF
Abstract

The corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads was examined. This aluminum alloy is typically used in aerospace structural components such as the wing spars of aircraft. Axial fatigue specimens were subjected to a loading spectrum that consisted of a fully reversed periodic overload of near-yield magnitude followed by 200 smaller cycles at high R-ratio. The specimens were fatigue tested while they were fully immersed in an aerated and recirculated 3.5 wt% NaCl simulated seawater solution.The results for the corrosion-fatigue testing were compared to data obtained for the same overload spectrum applied in laboratory air. A damage analysis showed that the presence of the corrosive environment accelerated the damage accumulation rate to a greater extent than that observed in air, particularly at low stress ranges. This resulted in a reduction in the fatigue strength of the material when it was simultaneously subjected to overloads and a corrosive environment. It is believed that the reduced fatigue life was due primarily to corrosion pit formation and a combination of anodic dissolution at the crack tip and hydrogen embrittlement. For practical purposes, the endurance-limit of the material disappears under these conditions.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,