Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7781083 | Carbohydrate Polymers | 2018 | 7 Pages |
Abstract
Fabrications and applications of luminescent films have been an interesting and important challenge within the realm of academia and industry. Herein, a novel fluorescence-based strategy for the H2O2 detection has been developed by fabrication of stabilized, thin, transparent, and luminescent films composed of europium-containing polyoxometalates (Eu-POM) and environmentally friendly chitosan (CS) via a facile solution casting approach. In comparison with pure Eu-POM, enhanced fluorescent properties are obtained from the as-prepared Eu-POM/CS films in terms of prolonged fluorescence lifetime and a remarkable fluorescent quenching effect in the presence of hydrogen peroxide (H2O2). The fluorescence intensity of Eu-POM/CS films exhibits a linear correlation in response to the H2O2 concentration over a wide range of 1.1-66âμM, with a detection limit of 0.11âμM. Furthermore, the fluorescent films display a high detection selectivity which are capable of differentiating hydrogen peroxide (H2O2) from the interfering species, such as sugars, l-amino acids, and other metabolites. All these advances towards the development of Eu-POM/CS films open up new applications for luminescent films, but most importantly, they can help in the far-reaching technological implementations of a simple, cost-effective method for the detection of H2O2 in many fields.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Jie Lu, Qi Kang, Jianhong Xiao, Tao Wang, Ming Fang, Li Yu,