Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7781852 | Carbohydrate Polymers | 2018 | 31 Pages |
Abstract
Hyaluronate-based hydrogels have been widely exploited as synthetic extracellular matrices in many tissue engineering applications, including cartilage tissue engineering. Hyaluronate-based hydrogels are typically prepared by chemical cross-linking reactions, in which chemical reagents may induce side effects, unless they are completely removed after the cross-linking reaction. We thus suggest the utilization of hybrid materials composed of hyaluronate as a main chain and alginate for physical cross-linking to simply form hydrogels in the presence of calcium ions under physiological conditions. In this study, we hypothesized that the introduction of biomimetic peptides to hyaluronate-alginate hybrid (HAH) hydrogels could be useful to regulate the chondrocyte phenotype, including chondrogenic differentiation. HAH was modified with the arginine-glycine-aspartate (RGD) peptide as a cell-matrix interaction motif and/or histidine-alanine-valine (HAV) as a cell-cell interaction motif. The HAV peptide is known to bind to cadherin, which is a key factor involved in homophilic cell-cell interactions as well as chondrogenesis. The viability and growth of mouse chondrocytes (ATDC5 cells) increased significantly when cultured on RGD-modified HAH hydrogels. Cell aggregates formed on HAV-modified HAH hydrogels, resulting in enhanced chondrogenic differentiation via enhanced cell-cell interactions by HAV modification. Interestingly, a synergistic effect of HAV and RGD peptides within HAH hydrogels on chondrogenesis was found in 3-D experiments in vitro. This approach to utilizing physically cross-linkable hyaluronate-based hydrogels presenting biomimetic peptides has potential applications in tissue engineering, including cartilage regeneration.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Hyoseok An, Jae Won Lee, Hyun Ji Lee, Yerang Seo, Honghyun Park, Kuen Yong Lee,