Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7781939 | Carbohydrate Polymers | 2018 | 9 Pages |
Abstract
The objective of this study was to obtain structure-digestion relationships of fully gelatinized starch. Twelve starch samples with marked fine structural differences (HPLC-SEC) were studied for their retrogradation behavior (thermal and rheological properties of starch gels) and in vitro digestibility. A reduction in the digestion rate during storage for 7 days was observed in all samples and, interestingly, this reduction was particularly evident in sago (64.7%), potato (57.3%), pea (55.1%) and acid-converted maize (ACM, 51.6-51.8 %) starches. Results indicated two potential interactions that may result in slowly digestible supramolecular structures: 1) double helices between external A and B1 chains of DP at peak maximum ⥠15.5 Glucose Units (perhaps involving internal long chains) that also are prone to forming intermolecular associations [high relative drop in the storage modulus (G') during heating of 7 days-stored gels] and; 2) interactions of small molecular size acid-hydrolyzed starch molecules that may be more mobile and easily aligned.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Mario M. Martinez, Cheng Li, Monika Okoniewska, Indraneil Mukherjee, Dominic Vellucci, Bruce Hamaker,