Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7782209 | Carbohydrate Polymers | 2018 | 31 Pages |
Abstract
The design and structural optimisation of a novel polysaccharide-based nanomaterial for the controlled and sustained release of doxorubicin are here reported. A cross-linked polymer was obtained by reacting a tetraglucose, named cyclic nigerosyl-1-6-nigerose (CNN), with pyromellitic dianhydride. The cross-linking reaction formed solid nanoparticles, named nanosponges, able to swell as a function of the pH. Nanoparticle sizes were reduced using High Pressure Homogenization, to obtain uniform nanosuspensions. Doxorubicin was incorporated into the CNN-nanosponges in a good extent. DSC and solid state NMR analyses proved the drug interaction with the polymer matrix. In vitro studies demonstrated pH-dependent slow and prolonged release kinetics of the drug from the nanoformulation. Doxorubicin-loaded CNN-nanosponges were easily internalized in A2780 cell line. They might considered an intracellular doxorubicin reservoir, able to slowly release the drug over time. CNN-nanosponges may be promising biocompatible nanocarriers for the sustained delivery of doxorubicin with potential localised application in cancer treatments.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
F. Caldera, M. Argenziano, F. Trotta, C. Dianzani, L. Gigliotti, M. Tannous, L. Pastero, D. Aquilano, T. Nishimoto, T. Higashiyama, R. Cavalli,