Article ID Journal Published Year Pages File Type
778257 European Journal of Mechanics - A/Solids 2006 13 Pages PDF
Abstract

Vibration and stability are investigated for an axially moving beam constrained by simple supports with torsion springs. A scheme is proposed to derive natural frequencies and modal functions from given boundary conditions of an elastic beam moving at a constant speed. For a beam constituted by the Kelvin model, effects of viscoelasticity on the free vibration are analyzed via the method of multiple scales and demonstrated via numerical simulations. When the axial speed is characterized as a simple harmonic variation about the constant mean speed, the instability conditions are presented for axially accelerating viscoelastic beams in parametric resonance. Numerical examples show the effects of the constraint stiffness, the mean axial speed, and the viscoelasticity.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering