Article ID Journal Published Year Pages File Type
7783548 Carbohydrate Polymers 2018 45 Pages PDF
Abstract
Blend solutions of poly(ε-caprolactone) (PCL) and N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh) were successfully electrospun. The weight ratio PCL/QCh ranged in the interval 95/5-70/30 while two QCh samples were used, namely QCh1 (DQ¯ = 47.3%; DPv¯ = 2218) and QCh2 (DQ¯ = 71.1%; DPv¯ = 1427). According to the characteristics of QCh derivative and to the QCh content on the resulting PCL/QCh nonwoven, the nanofibers displayed different average diameter (175 nm-415 nm), and the nonwovens exhibited variable porosity (57.0%-81.6%), swelling capacity (175%-425%) and water vapor transmission rate (1600 g m−2 24 h-2500 g m−2 24 h). The surface hydrophilicity of nonwovens increases with increasing QCh content, favoring fibroblast (HDFn) adhesion and spreading. Tensile tests revealed that the nonwovens present a good balance between elasticity and strength under both dry and hydrated state. Results indicate that the PCL/QCh electrospun nonwovens are new nanofibers-based biomaterials potentially useful as wound dressings.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,