Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
778632 | International Journal of Impact Engineering | 2011 | 10 Pages |
This paper presents a numerical study on the simulation of impacts of projectiles on fluid-filled containers. The type of impact investigated leads to hydrodynamic ram (HRAM) and complete failure of the container shell. Two different numerical approaches are compared which are both implemented in a research hydrocode: a pure Lagrangian discretization with Finite Elements (FE) and element erosion, and a coupled adaptive FE/SPH discretization. The numerical results are compared with two reference experiments. The principal phenomenology including the container deformation could be modeled well with both methods. The coupled FE/SPH approach was superior in the reproduction of the projectile’s observed residual velocity, it is, however, computationally more expensive.