Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7786604 | Carbohydrate Polymers | 2016 | 7 Pages |
Abstract
The controlled revision of surface properties to alter the hydrophobic features of nanocellulose is a potential technique to obtain materials for many novel applications and to replace oil-based materials acting as amphiphilic polyelectrolytes, among others. In this study, linear amines with increasing chain length were used to adjust the hydrophobicity of amphiphilic cellulose nanocrystals (CNCs). Methyl-, ethyl-, n-propyl-, n-butyl-, n-pentylamine, and n-hexylamine were introduced into a cellulose backbone using combined periodate oxidation and reductive amination in an aqueous environment. A high-pressure homogenizer was used to liberate a highly transparent (over 85% at visible light range) nanocrystal dispersion containing CNCs with a length of 73-131 nm and a width of 5-6 nm. All of the CNCs had similar charge density but the hydrophobicity, indicated by the contact angle measurement from the films, increased gradually from 64° to 109° as a function of amine chain length. Thus, this study demonstrated the fabrication of uniform, amphiphilic nanosized polyelectrolytes with modifiable hydrophobicity.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Juho Antti Sirviö, Miikka Visanko, Ossi Laitinen, Ari Ãmmälä, Henrikki Liimatainen,