Article ID Journal Published Year Pages File Type
7787153 Carbohydrate Polymers 2015 10 Pages PDF
Abstract
The antibacterial activity and biocompatibility of membranes of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and chitosan (CS) (PHBV)/CS) were evaluated in this study. Maleic anhydride (MA)-grafted polyhydroxyalkanoate (PHBV-g-MA) was evaluated as an alternative to PHBV. Mouse tail skin fibroblasts (FBs) were seeded on two series of these films to assess cytocompatibility. Collagen and cell proliferation analyses indicated that PHBV, PHBV-g-MA and their composite membranes were biocompatible with respect to FB proliferation. However, FB proliferation, collagen production and the percentage of normal cells growing on PHBV/CS membranes were greater than those for PHBV-g-MA/CS membranes. Cell-cycle and apoptosis assays by FBs on the PHBV-series membrane samples were not affected by DNA content related to damage; i.e. rapid apoptosis/necrosis was not observed, demonstrating the potential of PHBV/CS or PHBV-g-MA/CS membranes for biomedical material applications. Moreover, CS-based polysaccharide enhanced the Escherichia coli (BCRC 10239) antibacterial activity of the membranes. Membranes of PHBV-g-MA or PHBV containing CS-based polysaccharide had better antibacterial activity.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,