Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7787459 | Carbohydrate Polymers | 2015 | 7 Pages |
Abstract
A facile synthesis of highly stable silver nanoparticles (AgNPs) was reported using a biopolymer, xylan as both a reducing and stabilizing agent. Xylan was isolated from waste biomass, wheat bran (WB) by alkaline treatment and was characterized by Fehling's test, dinitrosalicylic acid assay, FTIR, 1H NMR and 13C NMR. The synthesized nanoparticles were characterized by UV-Vis spectroscopy and transmission electron microscopy. The nanoparticles were polydispersed with the size ranging from 20 to 45Â nm. The synthesized WB-xylan AgNPs showed excellent free radical scavenging activity. In addition, WB-xylan AgNPs showed fibrinolytic activity as evidenced by the zone of clearance in fibrin plate assay. The biomedical potential of the WB-xylan AgNPs was demonstrated by dissolution of preformed blood clots. These results suggest that the development of xylan-metal nanoparticle composite would be feasible to treat thrombus related diseases.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
B.S. Harish, Kiran Babu Uppuluri, Veerappan Anbazhagan,