| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7787560 | Carbohydrate Polymers | 2015 | 22 Pages |
Abstract
The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Christopher M. Lee, Jin Gu, Kabindra Kafle, Jeffrey Catchmark, Seong H. Kim,
