Article ID Journal Published Year Pages File Type
778770 International Journal of Impact Engineering 2008 11 Pages PDF
Abstract

The quasi-static and rate-dependent mechanical properties of aramid yarns are presented together with a study on different methods of securing yarn specimens in tensile tests. While capstans were found to be suitable for quasi-static tests, they either were not strong enough or had too high inertia for dynamic tests in a Split Hopkinson Pressure Bar setup. Instead, specially designed clamps were used. A viscoelastic material model to describe the mechanical behavior of the yarns, including failure, is also presented. The material model was employed in the computational simulation of ballistic penetration of woven aramid fabrics. Comparison of the simulations and actual ballistic tests showed that predictions of the energy absorbed by the fabric were in good agreement with the experiments.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,