Article ID Journal Published Year Pages File Type
7788382 Carbohydrate Polymers 2015 20 Pages PDF
Abstract
Native corn starch was esterified with acetic anhydride and plasticized with glycerol to give the thermoplastic starch acetate (TPSA). TPSA was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain biodegradable PLA/PEBA-g-GMA/TPSA blends with high notched impact resistance and low cost. Compared with PLA/PEBA-g-GMA blends, as much as 9 wt% expensive PEBA-g-GMA elastomer could be substituted by the slightly acetylated thermoplastic starch while retaining high impact strength. The mechanical properties depended on the esterification degree of starch acetate. The impact strength, tensile strength and elongation at break increased to the peak value with increasing the esterification degree from 0 to 0.04, thereafter they decreased on further increasing the esterification degree. The morphological results showed that the TPSA particles were smaller and more uniform at the optimum esterification degree of 0.04, leading to the peak value of the mechanical properties.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,