Article ID Journal Published Year Pages File Type
778869 International Journal of Impact Engineering 2016 17 Pages PDF
Abstract

Water-filled aluminum tubes were subjected to impact by six steel spherical projectiles of different diameters at impact velocities of 40–200 m/s. The effects of the diameter of the steel projectiles and of the material properties of the tubes on cracking and perforation were discussed. Water decreased the wall strength of the aluminum alloy tubes, and the impact velocity at which a steel projectile first passes through the tube wall decreased with increasing diameter of the steel projectile. Using the velocity at which the steel projectile perforates the tube wall, empirical equations of the energies required to perforate the tube wall were derived. Also, the energy balance in the steel projectile during a collision is discussed referring to the pressure history in the filled water and the velocities of the steel projectile before and after collision.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,