Article ID Journal Published Year Pages File Type
778913 International Journal of Impact Engineering 2006 14 Pages PDF
Abstract

A finite element analysis was conducted to study the influence of friction during ballistic impact of a rigid sphere onto a square fabric panel that was firmly clamped along its four edges. Projectile-fabric friction and yarn–yarn friction were investigated. Modeling indicates that friction dramatically affects the local fabric structure at the impact region by hindering the lateral mobility of principal yarns. Reduction of lateral yarn mobility allows the projectile to load and break more yarns so that fabric possessing a high level of friction absorbs more energy than fabric with no friction. The projectile-fabric friction delays yarn breakage by distributing the maximum stress along the periphery of the projectile-fabric contact zone. The delay of yarn breakage substantially increases the fabric energy absorption during the later stages of the impact. The yarn–yarn friction hinders the relative motion between yarns and thus resists de-crimping of fabric weave tightness. It induces the fabric to fail earlier during the impact process. The overall influence of projectile-fabric friction and yarn–yarn friction cannot be calculated by simply adding their individual effects.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,