Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7790021 | Carbohydrate Polymers | 2015 | 9 Pages |
Abstract
We prepare an elastic macroporous gelatin/chondoitin-6-sulfate/hyaluronan (GCH) cryogel scaffold mimic the composition of cartilage extracellular matrix for cartilage tissue engineering. By incorporating chitosan in the cryogel to replace 20% gelatin, a GCH-chitosan cryogel was also synthesized and compared with GCH cryogel for scaffold mechanical properties and chondrocytes response. The GCH-chitosan cryogel has larger pores, higher ultimate strain (stress) and elastic modulus, and lower stress relaxation percentage than the GCH cryogel. Both cryogels show a highly elastic property with a loss tangent around 0.1, but chitosan incorporation increases the storage modulus (elasticity). Chondrocytes proliferate and redifferentiate in cryogels; chitosan diminishes cell proliferation but up-regulates glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Implantation of a chondrocytes/GCH-chitosan cryogel construct in a full-thickness articular cartilage defect regenerates cartilage with positive stainings for GAGs and COL II and an elastic modulus similar to the native cartilage.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Chang-Yi Kuo, Chih-Hao Chen, Chien-Yu Hsiao, Jyh-Ping Chen,