Article ID Journal Published Year Pages File Type
779093 International Journal of Machine Tools and Manufacture 2006 10 Pages PDF
Abstract

This paper deals with the comparison of measured and calculated results of cutting force components and temperature variation generated on the tool tip in turning for different cutting parameters and different tools having various tool geometries while machining AISI 1040 steel hardened at HRc 40. The geometric variables (approaching angle and rake angle) of the tool were changed using selected cutting parameters; thus, the cutting force components and temperature variations on tool face (in secondary shear zone) were determined. The selected cutting variables and the tools in different geometries were tested practically under workshop conditions. In this way, the essential information about the validity of selected values was obtained. During the tests, the depth of cut and cutting speed were kept constant and each test was conducted with a sharp uncoated tool insert. For making a comparison, the main cutting force/tangential force component for different cutting parameters and tool geometries were calculated by Kienzle approach and the temperature values were calculated based on orthogonal cutting mechanism. Finally, the effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analysed. The average deviation between measured and calculated force results were found as 0.37%. The cutting force signals and temperature values provided extensive data to analyse the orthogonal cutting process.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,