Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7791315 | Carbohydrate Polymers | 2014 | 34 Pages |
Abstract
This study designs an alternative transdermal delivery system for 10,11-methylenedioxycamptothecin(MD-CPT) to inhibit keloid. Hyaluronic acid nanoemulsions (HANs) with nano size, negative charge and good stability were prepared as transdermal carriers. The MD-CPT loaded HANs performed desirable skin permeable capacity across human keloid skin and the drug was transferred directly to keloid lesion area. MD-CPT was delivered percutaneously higher than the control group. FITC-HANs could be successfully internalized by keloid fibroblast (KF) and deliver MD-CPT toward nucleus, inhibited the proliferation of KF, while there was no serious toxicity to normal skin fibroblasts. The growth-inhibitory effect was further clarified upon cell cycle regulation, which arrested cells at G1/S and prevented them entry into mitosis. KF gene expression demonstrated plasminogen activator inhibitor-1 (PAI-1) was significantly down-regulated and Smad7 up-regulated, which was beneficial to inhibit keloid. The study demonstrated that as transdermal delivery of MD-CPT by HANs has potential for inhibition of keloid fibroblast.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Yuanyuan Gao, Xiaojie Cheng, Zhiguo Wang, Juan Wang, Tingting Gao, Peng Li, Ming Kong, Xiguang Chen,