Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7791994 | Carbohydrate Polymers | 2014 | 8 Pages |
Abstract
Surface morphology of cellulosic adsorbents is expected to influence the adsorption behavior of biomacromolecules. In the present study, cellulose aerogel regenerated from ionic liquid solution was prepared for use as a polymer support for protein adsorption. Iminodiacetic acid groups were introduced to the aerogel for immobilized metal affinity adsorption of proteins. A Cu(II)-immobilized iminodiacetic acid cellulose aerogel (Cu(II)-IDA-CA), which has a large specific surface area, showed a higher adsorption capacity than Cu(II)-immobilized iminodiacetic acid bacterial cellulose (Cu(II)-IDA-BC) and Cu(II)-immobilized iminodiacetic acid plant cellulose (Cu(II)-IDA-PC). In contrast, the Cu(II)-immobilized cellulosic adsorbents showed similar adsorption capacities for smaller amino acid and peptides. The results show that cellulose aerogels are useful as polymer supports with high protein adsorption capacities.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Tatsuya Oshima, Toshihiko Sakamoto, Kaoru Ohe, Yoshinari Baba,