Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7792440 | Carbohydrate Polymers | 2014 | 10 Pages |
Abstract
Silver nanoparticles (AgNPs) were prepared by a laser ablation method and composite films with the AgNPs and agar were prepared by solvent casting method. UV-vis absorbance test and transmission electron microscopy (TEM) analysis results revealed that non-agglomerated spherical AgNPs were formed by the laser ablation method. The surface color of the resulting agar/AgNPs films exhibited the characteristic plasmonic effect of the AgNPs with the maximum absorption peaks of 400-407 nm. X-ray diffraction (XRD) test results also exhibited characteristic AgNPs crystals with diffraction peaks observed at 2θ values of 38.39°, 44.49°, and 64.45°, which were corresponding to (1 1 1), (2 0 0), and (2 2 0) crystallographic planes of face-centered cubic (fcc) silver crystals, respectively. Thermogravimetric analysis (TGA) results showed that thermal stability of the agar/AgNPs composite films was increased by the inclusion of metallic silver. Water vapor barrier properties and surface hydrophobicity of the agar/AgNPs films increased slightly with the increase in AgNPs content but they were not statistically significant (p > 0.05), while mechanical strength and stiffness of the composite films decreased slightly (p < 0.05). The agar/AgNPs films exhibited distinctive antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli O157:H7) bacterial pathogens.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Jong-Whan Rhim, Long-Feng Wang, Yonghoon Lee, Seok-In Hong,