Article ID Journal Published Year Pages File Type
779284 International Journal of Impact Engineering 2011 7 Pages PDF
Abstract

Recent studies have revealed microscopic amorphous lamella resulting from inelastic deformation in the ballistic impact of boron carbide ceramic. The possibility that these deformation features are a consequence of adiabatic shear deformation in the impact event is explored. An early theory of adiabatic shear that was limited to the response of rigid-plastic deformation is expanded to include elastic strain energy. The study reveals that elastic strain energy is commonly a small, but not negligible, contribution to impact-induced adiabatic shear in metals. Elastic strain energy is paramount in brittle solids. Relations are developed from the theory to predict the nominal width and spacing of adiabatic shear-bands in brittle solids. Comparisons of the theoretical predictions are consistent with observations of impact-induced deformation features in boron carbide.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,