Article ID Journal Published Year Pages File Type
7792896 Carbohydrate Polymers 2014 7 Pages PDF
Abstract
Homogenous cellulose/laponite aqueous dispersions and composite films were respectively prepared from the pre-cooling NaOH/urea aqueous systems. Rheological measurements of aqueous dispersions demonstrated a sol-to-gel transition triggered by loading of laponite, reflecting a cross-linkage effect of cellulose/laponite hybrids. Similarly, based on scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) characterizations, as well as mechanical and thermal measurements, the cross-linkage effect of cellulose/laponite hybrids was also found in solid films, which played an important role in improving the tensile strength (σb) of composite films. For instance, the σb exhibited a largest enhancement up to 75.7% at a critical laponite content of 0.100 wt%, indicating that the property of composite film was closely related with the dispersion and interaction state of laponite, i.e. its content in cellulose matrix. These results were expected to provide significant information for fabrication and utility of cellulose-based materials.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , ,