Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7793212 | Carbohydrate Polymers | 2014 | 9 Pages |
Abstract
High-amylose cereal endosperm is rich in heterogeneous starch granules. In this paper, we investigated the morphology, structure and gelatinization properties of high-amylose maize endosperm starch. Starch had individual, aggregate and elongated heterogeneous granules. Most of individual granules were round with small size and had one central hilum. Aggregate and elongated granules consisted of many subgranules with central hila, and had irregular and rod/filamentous shapes, respectively. Iodine stained starch granules showed five types of polarization colors: blue, purple, fuchsia, dark red, and interior dark blue and exterior brown. Most of individual and aggregate granules had the color of dark red, that of elongated granules the color of interior dark blue and exterior brown. Amylose was mainly distributed in the hilum region and the circumference of starch granules. Aggregate and elongated granules had higher amylose content than individual granules. Elongated and individual granules had the highest and the lowest gelatinization resistance among high-amylose maize heterogeneous starch granules, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Canhui Cai, Lingxiao Zhao, Jun Huang, Yifang Chen, Cunxu Wei,