Article ID Journal Published Year Pages File Type
7793548 Carbohydrate Polymers 2014 34 Pages PDF
Abstract
In this work new types of hydrophobically modified maltodextrin were prepared by enzyme-catalyzed reaction of maltodextrin and three fatty acids: decanoic acid (C-10), lauric acid (C-12) and palmitic acid (C-16). Lipase obtained from Thermomyces lanuginosus was found to be a useful biocatalyst in the maltodextrin esterification. Esterified maltodextrin with a degree of substitution (DS) 0.015-0.084 was prepared at the optimum conditions of 60 °C for 4 h. The DS was found to be at its highest when maltodextrin and fatty acids were taken in the ratio 1:0.5. The functional properties of these esterified maltodextrin were investigated. All esterified maltodextrin did not completely dissolve in water. Esterified maltodextrin at a concentration of 25% (w/w) exhibited Newtonian flow behavior similar to that of native maltodextrin. Esterified maltodextrin had a higher viscosity compare to native maltodextrin. X-ray diffraction pattern of esterified maltodextrin indicated crystallization of the fatty acid side chains. The thermal stability of esterified maltodextrin was checked by differential scanning calorimetry (DSC). Esterified maltodextrin was then used as an emulsifier to make n-hexadecane O/W emulsions. The emulsions were characterized according to their oil droplet characteristics and emulsification index.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,