Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7793578 | Carbohydrate Polymers | 2014 | 7 Pages |
Abstract
An enhanced bonding agent for papermaking was prepared by selective oxidation of a hemicellulose-rich byproduct of oat processing, which will be identified here by its primary component, β-d-glucan. The β-d-glucan was treated sequentially with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and sodium hypochlorite, or alternatively just with sodium hydroxide. When added to a slurry of unbleached softwood kraft fibers, in combination with an optimal dosage of aluminum sulfate, the oxidized β-d-glucan yielded greater increases in tensile strength and folding endurance in comparison to untreated β-d-glucan. NaOH treatment also improved dry-strength performance of the β-d-glucan, except for folding endurance. The improvements were attributed to increased charge density of the treated polyelectrolytes, leading to better distribution and retention on fibers prior to sheet formation. Modified β-d-glucan also enhanced the strength of recycled sheets when the treated paper was repulped and formed into recycled paper with no further chemical addition.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Xianliang Song, Martin A. Hubbe,