Article ID Journal Published Year Pages File Type
779873 International Journal of Adhesion and Adhesives 2015 7 Pages PDF
Abstract

Acrylate pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer seeded semi-batch emulsion polymerization process with butyl acrylate (BA), methyl methacrylate (MMA), acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA). These PSA polymers were then cross-linked with trifunctional propyleneimine external cross-linker (SAC-100) to study the cross-linking reaction between carboxylic group of the polymer chain and cross-linking agent. It was found that cross-linking provided a significant influence on the film formation process based on the result of SEM analysis. In addition, with the increase of SAC-100 content, the gel content of the polymer increased significantly, while molecular weight between cross-link points (Mc) and the sol molecular weight (Mw, Mn) of the polymer decreased remarkably. The TGA result showed that the addition of the external cross-linker can enhance the thermal stability of the latex film. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncross-linked counterparts. Besides, dynamic mechanical analysis (DMA) was also used to evaluate the viscoelastic properties of the acrylate emulsion PSA film.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,