Article ID Journal Published Year Pages File Type
779875 International Journal of Adhesion and Adhesives 2015 8 Pages PDF
Abstract

In this study, the effect of different levels and loadings of modified nanoclay (NC), nanoclay 1 CEC, 2 CEC and 4 CEC, cation exchange capacity on mechanical properties and adhesion strength of maleic anhydride grafted ethylene-propylene-diene terpolymer (EPDM-g-MAH)/nylon 66 systems were investigated. Fourier transform infrared (FTIR) data confirmed the reaction mechanism between maleic anhydride in the polymer backbone and the organomodifier of the nanoclay. Dynamic mechanical analysis (DMA) results showed that on increasing the levels of nanoclay modification, the storage modulus (Eʹ) increased as well as the glass transition temperature (Tg) was slightly shifted to lower temperature and the height of the damping property (tan δ) peaks decreased. The results revealed that the use of the three levels of modified clay with EPDM-g-MAH had significant effects on the tensile strength and elongation at break, especially at 5 parts per hundred rubber by weight (phr) filler content. Whereas in the case of lower nanoclay filler contents (i.e. 1 and 3 phr) the results clarified that they had little effect on tensile and elongation at break values. Pull-out adhesion tests showed that the adhesion force of NC 2 CEC nanocomposite was approximately twice that of the virgin polymer while the nanocomposite NC 4 CEC showed inferior adhesion values, especially at 5 phr filler content. Scanning electron microscopy (SEM) clarified that good wettability of elastomer took place, especially in case of NC 2 CEC which in turn led to an enhancement of the adhesion force between the elastomer and the nylon 66 cord.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,