Article ID Journal Published Year Pages File Type
780300 International Journal of Mechanical Sciences 2010 9 Pages PDF
Abstract

In this study, a mathematical model has been developed to predict austenite grain size (AGS) of hot rolled steel. Using the compression test, the static (SRX) and metadynamic (MDRX) recrystallization characteristics of medium carbon steel were studied. Compression tests were carried out at various temperatures in the range 900–1100 °C with strain rates ranging from 0.1 to 10 s−1. The time required for 50% recrystallization for the SRX and MDRX was determined by carrying out double compression tests, respectively. Grain growth equation after full recrystallization was also derived by compression tests with various interpass times. The currently determined microstructure model has been integrated with a three-dimensional non-isothermal finite element program. The predicted results based on the model proposed in the present investigation for hot bar rolling processes were compared with the experimental data available in the literature. It was found that the proposed model was beneficial to understand the effect of recrystallization behavior and control the microstructure evolution during the hot bar rolling.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,