Article ID Journal Published Year Pages File Type
780380 International Journal of Mechanical Sciences 2007 10 Pages PDF
Abstract

In this paper, the sound absorptions of flexible curved micro-perforated panels that are backed by an air cavity are studied in detail. A theoretical model that is based on the classical plate equation coupled with an acoustic wave equation is developed for the prediction of sound absorption. This model considers both symmetrical and antisymmetrical structural acoustic responses. Using the electro-acoustic analogy approach, another model is developed that only considers single structural and acoustic modes. It is proposed to make use of panel and cavity resonances to widen the absorption bandwidth of a single/double perforated absorber. The absorption of a flexible micro-perforated panel can be further enhanced by adjusting its curvature to bring the resonant frequencies closer together. The effects of various parameters such as boundary condition, incidence angle, and curvature on the absorption are studied. Predicted results for the single and double layer absorbers show good agreement with measurements.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,