Article ID Journal Published Year Pages File Type
780690 International Journal of Machine Tools and Manufacture 2010 12 Pages PDF
Abstract

Surface quality of workpiece during ceramic grinding is an ever-increasing concern in industries now-a-days. Every industry cares to produce products with supposedly better surface finish. The importance of the surface finish of a product depends upon its functional requirements. Since surface finish is governed by many factors, its experimental determination is laborious and time consuming. So the establishment of a model for the reliable prediction of surface roughness is still a key issue for ceramic grinding. In this study, a new analytical surface roughness model is developed on the basis of stochastic nature of the grinding process, governed mainly by the random geometry and the random distribution of cutting edges on the wheel surface having random grain protrusion heights. A simple relationship between the surface roughness and the chip thickness was obtained, which was validated by the experimental results of silicon carbide grinding.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,