Article ID Journal Published Year Pages File Type
780840 International Journal of Machine Tools and Manufacture 2009 8 Pages PDF
Abstract

Simulating the transient temperature field in additive layer manufacturing (ALM) processes has presented a challenge to many researchers in the field. The transient temperature history is vital for determining the thermal stress distribution and residual stress states in ALM-processed parts that utilise a moving laser heat source. The modelling of the problem involving multiple layers is equally of great importance because the thermal interactions of successive layers affect the temperature gradients, which govern the heat transfer and thermal stress development mechanisms. This paper uses an innovative simulation technique known as element birth and death, in modelling the three-dimensional temperature field in multiple layers in a powder bed. The results indicate that the heated regions undergo rapid thermal cycles that could be associated with commensurate thermal stress cycles. Deposition of successive layers and subsequent laser scanning produces temperature spikes in previous layers. The resultant effect is a steady temperature build-up in the lower layers as the number of layers increases.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,