Article ID Journal Published Year Pages File Type
781142 International Journal of Machine Tools and Manufacture 2007 11 Pages PDF
Abstract

Control systems are usually required to track reference signals while operating under the influence of disturbances. A fast tool servo system for noncircular machining application works under such conditions, resulting in large control efforts. This paper presents a linear active disturbance rejection controller design for a voice coil motor-driven fast tool servo system for noncircular machining application. The controller is designed through an extended state observer to estimate and compensate the variant dynamics of the system, nonlinearly variable cutting load, and other uncertainties. Then, a simple proportional derivative controller produces the control law. To improve the tracking performance of the fast tool servo, the tracking error from the trial-cutting workpiece is added to the reference input and used as feed-forward error compensation. In such a combined control arrangement, the active disturbance rejection controller provides active disturbance rejection ability for the controller, and the feed-forward error compensation controller improves the tracking precision. Both the tracking control and disturbance rejection performances are thus enhanced. In real-time control and implementation, the effects of finite word length, position feedback resolution, and short sampling period are analyzed and addressed. Machining experiments are conducted, and the results illustrate the control system synthesis procedures and a substantial improvement over the tracking error generated by the linear active disturbance rejection controller alone.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,