Article ID Journal Published Year Pages File Type
781731 International Journal of Fatigue 2006 10 Pages PDF
Abstract

A new approach is discussed for characterizing the damage state of FRP with the appearance of micro cracking and its influence on the residual strength. For the quantitative analysis of micro cracking, X-ray refraction topography was used. Fatigue treatment of carbon fibre reinforced plastics (CFRP) laminates were performed to create defined damage states. With regard to real loading conditions of CFRP, studies on tube samples were performed to investigate two dimensional (tension–torsion) loads. A rheological material model was presented which described the increase of micro cracking in ±45° CFRP laminates with a continuum mechanical approach. The correlation between the results of the X-ray refraction topography, the damage parameter of the rheological model and the decrease of residual strength were shown. The inter fibre fracture surface of the investigated CFRP materials was determined with tension–torsion loaded tube specimens of 90°-laminate and a layer-wise strength analysis was done. Micro cracking occurs even at 50% inter-fibre fracture loading and can lead to a distinct strength reduction. The intralaminar fatigue effect itself seems to be an indication for the damage accumulation and the load history.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,